Integrated Sensing and Prediction of Urban Water for Sustainable Cities (iSPUW)

Nick Z. Fang, Ph.D., P.E., Assistant Professor
Water Resources Engineering
Civil Engineering Department
The University of Texas at Arlington

June 5th, 2015
Urban Water Resources

- GIS and hydrologic/hydraulic modeling and watershed delineation
- NEXRAD radar-based flood warning system
- FloodPlain Map Library (FPML) – a real-time hydraulic prediction tool and unsteady-state floodplain modeling
- Water distribution network
- Low Impact Development (LID) modeling and sustainable design
- Groundwater flow and contaminant transport modeling
User and Stakeholder Engagement and Decision Support

Regional Users and Stakeholders:

- Academic Experts from DFW, Houston, San Antonio – several years of experience with LID sampling/evaluation
- Engineers, City managers, and Planners, and Landscape Architects from the DFW area and other concerned citizens
- Education and workforce development for future students and professionals (STEM, K-12, interns, etc.)

Ms. Suzanna Perea from EPA Region 6 was speaking at the workshop

The workshop covers topics:

- EPA Green Infrastructure (GI)
- GI Practice Performance Evaluation
- Sensing/Computing/Modeling
- LID Modeling Using Weather Radar
- Flood Prediction and Mitigation
- iSWM™
- Data Enabled Discovery
- Decision Support
- Economic assessment of GI/LID
The Integrated Sensing and Prediction of urban Water for Sustainable Cities (iSPUW)

(http://ispuw.uta.edu/nsf/)

Purpose:
• Population growth
• Urbanization
• Climate change
• Water supply shortages
• Flash floods
iSPUW Projects

(http://ispuw.uta.edu/nsf/)

- Advanced sensing and communications Precipitation sensing
- Water quantity and quality sensing
- Soil moisture sensing
- Crowd sourcing of water observations
- Distributed computing and intelligent systems
Researchers at iSPUW

Dr. Dong-Jun (DJ) Seo | Faculty Profile
Associate Professor and Area Coordinator
Civil Engineering Department
The University of Texas at Arlington
djseo@uta.edu | 817-272-5053
Water Resources Engineering

Dr. Jean Gao | Website
Professor
Computer Science and Engineering Department
The University of Texas at Arlington
gao@uta.edu | 817-272-3628

Dr. Nick Z. Fang, P.E. | Website
Assistant Professor
Civil Engineering Department
The University of Texas at Arlington
nickfang@uta.edu | 817-272-5334
Water Resources Engineering

Dr. Michael Zink | Website
Assistant Professor
Department of Electrical and Computer Engineering
The University of Massachusetts Amherst
zink@ecs.umass.edu | 413-545-4465

Dr. Xinbao Yu, P.E. | Website
Assistant Professor
Civil Engineering Department
The University of Texas at Arlington
xinbao@uta.edu | 817-272-1243

Dr. Branko Kerkez | Website
Assistant Professor
Civil Engineering Department
The University of Michigan
bkerkez@umich.edu | 734-647-0727
The Dynamic Inundation during Tropical Storm Allison (June, 2001)

\[y = 1.04x - 1.67 \]

\[R^2 = 0.90 \]
Dynamic Moving Storms (DMS)

Spatial Variability
Size, Shape, Orientation
Spatial pattern

Temporal Variability
Peak timing, Temporal pattern

Movement
Velocity, Direction, Pause, Turn
Sensitivity Analysis: Velocity & Dimension

- Peak Volume (cms) vs. Peak flow (cms)
- Diameter (km) vs. Velocity (km/h)
Tropical Cyclone Rainfall Reconstruction
Tropical Cyclone Rainfall Reconstruction
May 26 Flood in Houston

Motorists stranded along I-45

Brays Bayou overflowing its banks nearby North Braeswood.

Texas Medical Center during the flood

Memorial Drive during the flood
Brays Bayou and Harris Gully

Harris Gully: 4.5 sq. mi.
Brays Bayou: 129 sq. mi.
FAS3 Performance
May 25 - 26, 2015 Event

HEC1 Flow

- **Peak modeled flow**: 609 cfs
 - Occurred 12 hours ago
 - 12 hr. peak observed flow: 233 cfs
 - Occurred 6 hours, 55 minutes ago

- **No significant rainfall in last 12 hours**

 HEC1 computed at 8:32 PM. Data about 5 minutes old.

HEC1 Flow

- **Peak modeled flow**: 7646 cfs
 - Will occur in 3 hours, 45 minutes

 HEC1 computed at 9:31 PM. Data about 5 minutes old.

HEC1 Flow

- **Peak modeled flow**: 18617 cfs
 - Will occur in 3 hours

 HEC1 computed at 10:28 PM. Data about 10 minutes old.

HEC1 Flow

- **Peak modeled flow**: 24664 cfs
 - Will occur in 2 hours, 5 minutes

 HEC1 computed at 11:32 PM. Data about 5 minutes old.

Observed Flow

Flow (cfs)

- **2.0 in/hr**

Flow (cfs)

- **12-hour cumulative rainfall**: 1.2 inches
 - 1.1 inches in last hour.

Flow (cfs)

- **2.0 in/hr**

Flow (cfs)

- **12-hour cumulative rainfall**: 4.3 inches
 - 1.4 inches in last hour.
Flood Alert System Performance

May 26, 2015 Event

- Peak modeled flow: 28,264 cfs occurred 4 hours, 15 minutes ago.
- 12 hr. peak observed flow: 26,800 cfs occurred 6 hours, 10 minutes ago.
- 12-hour cumulative rainfall 8.4 inches.
- No appreciable rain in last hour.

HEC1 computed at 7:32 AM. Data about 5 minutes old.
Harris Gully at Brays Bayou

May 26, 2015 Event
Harris County OEM Rain Gage Data

Period: 24 hours
From May 25th 5:30 PM
to May 26th 5:30 PM
Harris County OEM Rain Gage Data
Acknowledgements

- Graduate Students
 - Shang Gao
 - Kiani Morteza
 - Daniel Li
 - Cassie Zhang
 - Ehsan Navadeh
 - Elahe Nezhad

- The University of Texas Arlington (UTA)
- Tarrant Regional Water District (TRWD)
- City of Kennedale
- National Science Foundation (NSF)
- National Oceanic and Atmospheric Administration (NOAA)
- U.S. Army Corps of Engineers (USACE)
- SSPEED Center